Topological Approximation and Compression of Functions and Their Wavelet Expansions

نویسندگان

  • William Lynch
  • Krasimir Kolarov
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images

With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

Quasi-orthogonal expansions for functions in BMO

For {φ_n(x)}, x ε [0,1] an orthonormalsystem of uniformly bounded functions, ||φ_n||_{∞}≤ M

متن کامل

Time Accurate Fast Wavelet-Taylor Galerkin Method for Partial Differential Equations

We introduce the concept of fast wavelet-Taylor Galerkin methods for the numerical solution of partial differential equations. In wavelet-Taylor Galerkin method discretization in time is performed before the wavelet based spatial approximation by introducing accurate generalizations of the standard Euler, and leap-frog time-stepping scheme with the help of Taylor series expansions in the time s...

متن کامل

Vanishing moments and the approximation power of wavelet expansions

The order of a wavelet transform is typically given by the number of vanishing moments of the analysis wavelet. The Strang-Fix conditions imply that the error for an orthogonal wavelet approximation at scale a i = − 2 globally decays as a , where L is the order of the transform. This is why, for a given number of scales, higher order wavelet transforms usually result in better signal approximat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998